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ABSTRACT
This paper proposes a new deep learning model using re-
lational reasoning with diffusion-weighted imaging (DWI)
data. We investigate how effectively and comprehensively
DWI tractography-based connectome predicts the impair-
ment of expressive and receptive language ability in individ-
ual children with focal epilepsy (FE). The proposed model
constitutes a combination of a dilated convolutional neural
network (CNN) and a relation network (RN), with the lat-
ter being applied to the dependencies of axonal connections
across cortical regions in the whole brain. The presented
results from 51 FE children demonstrate that the proposed
model outperforms other existing state-of-the-art algorithms
to predict language abilities without depending on connec-
tome densities, with average improvement of up to 96.2%
and 83.8% in expressive and receptive language prediction,
respectively.

1. INTRODUCTION

Focal epilepsy (FE) disrupts brain functions supporting lan-
guage development and increases the risk of intellectual dis-
abilities [1, 2]. Given the importance of age-appropriate lan-
guage development for educational and social wellbeing, it is
clinically imperative that any impairments in language func-
tion are readily, objectively, and reliably identified. Indeed,
there is an urgent need for whole-brain neuroimaging tools
which can non-invasively identify altered brain networks un-
derlying language impairment in FE, because neural dynam-
ics supporting language function involve extensive brain net-
works not limited to a single region [3].

The overall purpose of this study is to determine how
effectively and comprehensively diffusion-weighted imaging
(DWI) tractography-based connectome can predict the im-
pairment of expressive and receptive language ability in in-
dividual FE children. The first analytic step in this study was
to model the whole brain as a large distributed network called
a “connectome matrix,” represented by a collection of nodes
(i.e., cortical and subcortical regions) and edges (i.e., pair-
wise connections between nodes). By tracking a diffusion
signal between two given nodes, we quantified pair-wise con-
nectivity for each edge and then investigated the relationship
of the quantified connectivity with expressive and receptive
language scores as rated by the Clinical Evaluation of Lan-

guage Fundamentals (CELF) assessment [4].
As one of the most powerful deep learning models, con-

volutional neural networks (CNN) have been widely used in
biomedical imaging tasks [5]. Recent studies have applied
CNN to predict cognitive and neuromotor outcomes from
connectivity networks in infant brains [6]. However, the
convolutional masks are applied through a sliding window
in CNN, and thus the extracted features are inevitably local
without any long-range connectivity information. More im-
portantly, the spatial arrangement of nodes is arbitrarily deter-
mined by a fixed cortical atlas (e.g., Automated Anatomical
Labelling (AAL) atlas [7]). This configuration leaves local
edges ill-posed to represent specific functional networks, and
creates a need for new deep learning networks that can fea-
sibly consider non-local relations across more remote edges.
Our working hypothesis is that straightforward analysis (e.g.,
regression) based on local CNN features would be natu-
rally limited - unable to identify and leverage the complex,
non-local connectivity patterns needed to accurately predict
language impairment.

As an alternative approach, the present study proposes to
predict language impairment using a dilated CNN augmented
with a relation network (dilated CNN+RN). A relation net-
work (RN) [8] is a special graph network [9] whose com-
putations focus explicitly on relational reasoning. The main
contributions of our work is summarized as follows:
1. To our knowledge, this is the first work that predicts lan-
guage impairment using deep relational reasoning. Our pre-
dictive model, dilated CNN+RN, can identify and leverage
the complex, non-local connectivity patterns in the connec-
tome matrix obtained from clinically acquired DWI data.
2. Dilated CNN+RN significantly outperforms the current
state-of-the-arts in predicting expressive and receptive lan-
guage scores. Analysis of predicted and actual scores shows
that dilated CNN+RN provides an effective tool to improve
our understanding of the neuroanatomical substrates of lan-
guage impairment in FE children.

2. METHODOLOGY

2.1. Study subjects
The present study included 51 children clinically diagnosed
with FE (age: 11.8 ± 3.1 years, 26 boys). Language ability
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Fig. 1. Representative examples of adjacency matrix, S(i, j),
in DWI connectome. (a) high density (q=0.1). (b) medium
density (q=0.4). (c) low density (q=0.8).

was assessed using the CELF-Preschool (CELF-P) for chil-
dren aged 2-5 years, and CELF-4th version for children aged
6 years and above. Composite measures derived from CELF
yielded expressive and receptive language scores that were
standardized to a mean of 100 and standard deviation of 15,
with a sample mean ± standard deviation of 76 ± 24 and
81 ± 24 in expressive and receptive language ability, respec-
tively. These scores were used as the ground-truth to gener-
ate our RN-based predictive models using DWI connectome.
The study was approved by University's Institutional Review
Board (IRB).

2.2. Construction and augmentation of DWI connectome
The Automated anatomical labeling (AAL) parcellation
scheme [7] was spatially normalized to a T1-weighted image
using Advanced Normalization Tools [10] and then applied to
whole brain tractography in order to construct a DWI-based
brain connectome, where a set of 116 nodes represents re-
gions of interest in the whole brain, and S is an adjacency
matrix of edges representing the strength of pair-wise con-
nection between each pair of brain nodes. The number of
white-matter streamlines connecting the nodes is normalized
by both average streamline length and volume of the nodes in
order to stabilize inter-subject variability (due to intracranial
volume and age differences). To reduce false positives, we
identified true positive connections of S as pair-wise con-
nections for which the strength values are greater than the
threshold of quantiles satisfying q cumulative probability of
element value in S (i.e., q = 0.1/0.4/0.8 for high, medium and
low density, respectively, as shown in Fig. 1).

To prevent overfitting of RN layers in a relatively small
cohort (n=51), we applied synthetic minority over-sampling
technique (SMOTE) [11] which enlarges the training and
testing dataset up to 510 augmentations per patient. Each
[Sm,tm] of the mth study subject was stacked in a 51× 6729
matrix, where the ith row is a 1×6729 vector (6728 elements
of Sm and a scalar of tm i.e., CELF score). Then each row
of this matrix was augmented 510 times by randomly inter-
polating its 6 nearest neighbors, resulting in an augmented
matrix of size 26061 × 6729. We randomly assigned 34
patient data and their augmented counterparts as a training
cohort which comprised of 17,374 instances (66.7%). The
remaining 17 patient data and their augmented counterparts
were assigned into a test cohort which comprised of 8,687

instances (33.3%).

2.3. Dilated CNN+RN for prediction of language score

The proposed dilated CNN+RN performs relational reason-
ing with the connectome matrix. Since our input image (the
connectome matrix) is of size 116 × 116, if we consider the
pixels of the image as nodes of a graph network, the number
of nodes in the graph network would be V = (116)2 and the
number of edges would be E = V (V−1)

2 , making the graph
network practically non-trainable. Hence, we need a function
that can map the pixels of the image to the nodes of the graph
network. This function is achieved by the convolutional op-
eration in CNN. Notice that the convolution operation of a
kernel only covers a local spatial region of the image. Here,
we need an inference model which can leverage non-local re-
lations between the extracted features.

2.3.1. Relational Network

Fig. 2 presents the architecture of the dilated CNN+RN model
where CNN is used to parse the pixel inputs into a set of fea-
tures. The output of CNN is a set of feature maps and an ob-
ject is a slice of the feature map through the third dimension.
RN [8] focuses explicitly on relational reasoning to capture
the dependencies of axonal connections: edges (i.e., objects)
across cortical regions of the whole brain. Mathematically,
RN is a composite function given by:

tm = RN(O) = fφ

 1

N

∑
i,j

gθ(oi, oj)

 (1)

where oi and oj are a possible object pair obtained from the
feature maps; the function g is a fully connected (FC) net-
work which operates on these object pairs and computes rela-
tions between them; and the function f is another FC network
which operates on the averaged relations and predicts the fi-
nal score. N is the total number of relations obtained from the
final feature maps.

2.3.2. Dilated convolution

Since the connectome matrix was sparse, and we wanted to
consider all the possible relations between extracted objects,
we used dilated convolution kernels in CNN [12], which
have a larger receptive field than usual kernels, resulting in
a smaller feature map and thereby obtaining more important
relation vectors to be used by the RN. The dilated convolution
operation is given as,

(x ∗l h)(p) =
∑

s+lt=p

x(s)h(t) (2)

where l is the dilation factor, x is the image and h is the con-
volution kernel. For the convolution operation, if the input
image shape is X , kernel size is f , padding is p, stride is s,
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Fig. 2. Network architecture of the proposed dilated CNN+RN which takes a given input Sm to predict an output score tm.

dilation factor is l, then the output shape D is given by:

D =

⌊
X − f − (f − 1) ∗ (l − 1) + 2 ∗ p

s

⌋
+ 1 (3)

2.3.3. Gradient based activation maps

We adopted a generalized gradient-based class activation
mapping (Grad-CAM - [13]) in dilated CNN+RN to un-
derstand which connections in the connectome matrix are
important for the final prediction. In Grad-CAM, the weights
of the gradients αck are first calculated by taking the partial
derivative of output score w.r.t the set of feature maps as
shown below,

αck =
1

Z

∑
i

∑
j

∂yc
∂Akij

(4)

where yc is the score for class c, Ak is the set of final feature
maps after the last layer of convolution, and Z is a normaliz-
ing factor. The final activation map LcGrad−CAM is given as
follows:

LcGrad−CAM = RELU(
∑
k

αckA
k) (5)

where the RELU operation removes the negative gradients.
In our architecture, we computed the activation maps after

the fourth convolution layer. We used the regression score
after the final linear layer to obtain the activation maps for the
CELF expressive and receptive scores.

2.4. Implementation

Due to the symmetric property of the connectome matrix, we
used only the upper triangular part of the matrix as the input
to our model. The output after the final dilated CNN layer
were 32 feature maps each of size 3 × 3. An object was
sliced from the third dimension of the feature maps as shown
in Fig. 2. The final layer of the network following f was a
linear layer with one unit which was required for regression.

The model was trained for 1000 epochs with adam optimizer
having learning rate of 0.0001 and with a batch size of 128.
Mean squared error was used as the loss function.

3. RESULTS

3.1. Experiment setup

Computational experiments were carried out to compare the
performance of the dilated CNN+RN model with current
state-of-the-art models used for prediction of language im-
pairment. In the same training and testing splits, we compared
the prediction performances of the following models:
Baseline: Multi-Layer Regressor (MLR) - comprised of a
four layer fully connected network with 512 units in the first
2 layers followed by 256 units in the third layer and a single
linear unit in the final layer.
CNN models: CNN+MLR - comprised of a four layer CNN
where each layer of CNN had 32 kernels of size 3 × 3, fol-
lowed the same MLR as the baseline.
State-of-the-art model: BrainNetCNN [6] (Edge-to-Node
Network, E2N) - E2N layer had 32 cross-shaped kernels with
size equal to the input connectome matrix, i.e., (116 × 1)
× (1 × 116), which were strided along the diagonal of the
connectome matrix. This was followed by a fully connected
network with 30 units.
Our proposed model: Dilated CNN+RN - comprised of a
dilated CNN with four layers, similar to the CNN model de-
scribed above, but with the last two layers having a dilated
kernel with dilation factor of 2. The RN comprised of func-
tion g which had four fully connected layers, each layer hav-
ing 512 units. The output of g was averaged and then the
function f was applied on this combination. Function f com-
prised of three fully connected layers with 512 units. The final
layer was a linear layer.

Three metrics were used to evaluate the performance
of each model, including the mean absolute error (MAE)
between the observed and actual receptive and expressive
scores [6], standard deviation of absolute error (SDAE) [6],
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Table 1. Performance comparison of the dilated CNN+RN with other models. For each model, MAE, SDAE and PE were
evaluated at 3 different connectome densities: density 1 (high), density 2 (medium), and density 3 (low). R and E indicate
receptive score and expressive score, respectively.

Network
Score
Type

Density 1
(MAE, SDAE, PE)

Density 2
(MAE, SDAE, PE)

Density 3
(MAE, SDAE, PE)

MLR R 26.796, 12.696, 14.26% 25.068, 12.168, 19.12% 14.232, 8.7720, 57.85%
E 26.352, 12.852, 24.17% 27.120, 13.284, 24.05% 16.092, 10.692, 48.90%

CNN + MLR R 3.7200, 2.7360, 100.0% 3.1800, 2.5320, 100.0% 8.0400, 5.6760, 94.15%
E 1.8720, 1.6320, 100.0% 1.9680, 1.5000, 100.0% 11.640, 6.5520, 70.62%

E2N R 1.2000, 1.0800, 100.0% 1.4520, 1.3680, 100.0% 14.196, 8.8200, 59.13%
E 1.6920, 1.3800, 100.0% 2.2800, 2.3040, 100.0% 16.776, 10.008, 46.73%

Dilated CNN + RN R 0.9120, 1.5000, 100.0% 0.7660, 1.7400, 100.0% 1.0440, 2.7360, 100.0%
E 0.2120, 0.2520, 100.0% 0.2060, 0.2440, 100.0% 0.3720, 0.5160, 100.0%

and probability of MAE less than 15 (PE) (i.e., the frequency
of the predicted score close to the actual score by a margin
less than 15, one standard deviation of the normative cohort).

3.2. Prediction of language scores

Table 1 presents prediction performances of dilated CNN+RN
and other models. The dilated CNN+RN yielded the best per-
formance compared to other models. Both MAE and SDAE
of the dilated CNN+RN are significantly lower than those
of other methods when predicting expressive and receptive
scores, yielding a respective 87-98% and 24-92% improve-
ment in MAE over E2N. On average, MAE for expressive
score prediction was reduced up to 6.65, with the greatest re-
duction of 16.4 (for lowest density) and the least reduction
of 1.48 (for highest density). On average, MAE for recep-
tive score prediction was reduced by 4.71, with the greatest
reduction of 13.15 (for lowest density) and the least reduction
of 0.29 (for highest density). These superior performances
yielded 100% of PE to predict both expressive and receptive
scores, suggesting that the dilated CNN+RN can provide a re-
liable means to predict language impairment, and ultimately
may help supplement or replace portions of laborious neu-
ropsychological assessments in clinical cases with serious be-
havioral problems.

3.3. Activation maps of language scores

Fig. 3 shows the activation maps (partial derivatives) associ-
ated with expressive and receptive language scores (Eq. 5),
averaged over the top 20 subjects (with minimal MAE). 2-D
circular connectograms also present multiple hub nodes hav-
ing the highest partial derivatives (i.e., Z-score of activation
weight ≥ 2.5 and 3.5 for expressive and receptive language)
and their connections to other nodes (i.e., each line segment
indicates a Z-score of activation weight). For prediction of
expressive language score, left superior frontal medial cortex
(SFGmed.L) and right olfactory cortex (OLF.R) appeared to
be prominent hubs of important connections, as previously
reported [14]. That is, connection edges across these hubs
were found to be the most predictive of high expressive score.
In contrast, bilateral hippocampus (HIP L. and HIP. R) and

Fig. 3. Activation maps showing AAL regions learned by
the dilated CNN+RN as the most predictive of CELF scores.
Each 2D circular connectome presents Circos ideogram avail-
able at http://mkweb.bcgsc.ca/tableviewer/.

left Heschl gyrus (HES.L) appear to be prominent hubs of
important connections for receptive language score predic-
tion [15]. Connection edges from hippocampus to thalamus
(HIP.L-THA.L and HIP.L-THA.R) were the most predictive
of receptive language score. Specifically, weaker connections
across these regions were predictive of worse receptive lan-
guage scores, suggesting severe language impairment. There
were no noticeable overlaps between the edges that are most
predictive of expressive and receptive scores.

4. CONCLUSION

The present study investigated the clinical utility of deep rela-
tional reasoning to predict language abilities from DWI con-
nectome data of children with focal epilepsy. This approach
may lead to the refinement of imaging and language pheno-
type relationships, and ultimately could help develop individ-
ualized therapeutic interventions for language impairment in
young children, who are difficult to diagnose by current neu-
ropsychological evaluations.
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